A symbolic approach to some identities for Bernoulli – Barnes
نویسندگان
چکیده
The Bernoulli–Barnes polynomials are defined as a natural multidimensional extension of 21 the classical Bernoulli polynomials. Many of the properties of the Bernoulli polynomials 22 admit extensions to this new family. A specific expression involving the Bernoulli–Barnes 23 polynomials has recently appeared in the context of self-dual sequences. The work pre24 sented here provides a proof of this self-duality using the symbolic calculus attached to 25 Bernoulli numbers and polynomials. Several properties of the Bernoulli–Barnes polyno26 mials are established by this procedure. 27
منابع مشابه
Extended Zeilberger’s Algorithm for Identities on Bernoulli and Euler Polynomials
We present a computer algebra approach to proving identities on Bernoulli and Euler polynomials by using the extended Zeilberger’s algorithm given by Chen, Hou and Mu. The key idea is to use the contour integral definitions of the Bernoulli and Euler numbers to establish recurrence relations on the integrands. Such recurrence relations have certain parameter free properties which lead to the re...
متن کاملHigher Order Degenerate Hermite-Bernoulli Polynomials Arising from $p$-Adic Integrals on $mathbb{Z}_p$
Our principal interest in this paper is to study higher order degenerate Hermite-Bernoulli polynomials arising from multivariate $p$-adic invariant integrals on $mathbb{Z}_p$. We give interesting identities and properties of these polynomials that are derived using the generating functions and $p$-adic integral equations. Several familiar and new results are shown to follow as special cases. So...
متن کاملDerivation of identities involving some special polynomials and numbers via generating functions with applications
The current article focus on the ordinary Bernoulli, Euler and Genocchi numbers and polynomials. It introduces a new approach to obtain identities involving these special polynomials and numbers via generating functions. As an application of the new approach, an easy proof for the main result in [6] is given. Relationships between the Genocchi and the Bernoulli polynomials and numbers are obtai...
متن کاملModified degenerate Carlitz's $q$-bernoulli polynomials and numbers with weight ($alpha ,beta $)
The main goal of the present paper is to construct some families of the Carlitz's $q$-Bernoulli polynomials and numbers. We firstly introduce the modified Carlitz's $q$-Bernoulli polynomials and numbers with weight ($_{p}$. We then define the modified degenerate Carlitz's $q$-Bernoulli polynomials and numbers with weight ($alpha ,beta $) and obtain some recurrence relations and other identities...
متن کاملNew identities involving Bernoulli and Euler polynomials
Using the finite difference calculus and differentiation, we obtain several new identities for Bernoulli and Euler polynomials; some extend Miki’s and Matiyasevich’s identities, while others generalize a symmetric relation observed by Woodcock and some results due to Sun.
متن کامل